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Abstract

The building-block hypothesis states that the GA works well when short,
low-order, highly-fit schemas recombine to form even more highly fit
higher-order schemas. The ability to produce fitter and fitter partial solu-
tions by combining building blocks is believed to be a primary source of the
GA’s search power, but the GA research community currently lacks pre-
cise and quantitative descriptions of how schema processing actually takes
place during the typical evolution of a GA search. Another open prob-
lem is to characterize in detail the types of fitness landscapes for which
crossover will be an effective operator. In this paper we first describe a
class of fitness landscapes (the “Royal Road” functions) that we have de-
signed to investigate these questions. We then present some unexpected
experimental results concerning the GA’s performance on simple instances
of these landscapes, in which we vary the strength of reinforcement from
“stepping stones” —fit intermediate-order schemas obtained by recombin-
ing fit low-order schemas. Finally, we compare the performance of the GA
on these functions with that of three commonly used hill-climbing schemes,
and find that one of them, “random-mutation hill-climbing”, significantly
outperforms the GA on these functions.
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1 INTRODUCTION

Research on the foundations of genetic algorithms aspires to answer two general
questions: How do GAs work, and what are they good for? A successful theory
of GAs would describe the laws governing the behavior of schemas in GAs and
characterize the types of fitness landscapes on which the GA is likely to perform
well, especially as compared with other search methods such as hill-climbing. This,
of course, requires a statement of what it means for a GA to “perform well”. That
is, we need a better understanding of what it is the GA is good at doing (e.g.,
finding a global optimum versus quickly finding a fairly good solution).

Our strategy for answering these questions consists of the following general ap-
proach. We begin by identifying features of fitness landscapes that are particularly
relevant to the GA’s performance. A number of such features have been discussed
in the GA literature, including local hills, “deserts”, deception, hierarchically struc-
tured building blocks, noise, and high fitness variance within schemas. We then
design simplified landscapes containing different configurations of such features,
varying, for example, the distribution, frequency, and size of different features in
the landscape. We then study in detail the effects of these features on the GA’s
behavior. A longer-term goal of this research is to develop statistical methods of
classifying any given landscape in terms of our spectrum of hand-designed land-
scapes, thus being able to predict some aspects of the GA’s performance on the
given landscape.

It should be noted that by stating this problem in terms of the GA’s performance
on fitness landscapes, we are sidestepping the question of how a particular problem
can best be represented to the GA. The success of the GA on a particular function
is certainly related to how the function is “encoded” (Goldberg, 1989b; Liepins &
Vose, 1990) (e.g., using Gray codes for numerical parameters can greatly enhance
the performance of the GA on some problems), but since we are interested in biases
that pertain directly to the GA, we will simply consider the landscape that the GA
“sees.”

In this paper we describe some initial results from this long-term research pro-
gram. We began by focusing on the building-block hypothesis (Holland, 1975; Gold-
berg, 1989b), which states that the GA works well when short, low-order, highly-fit
schemas (“building blocks”) recombine to form even more highly fit higher-order
schemas. In Goldberg’s words, “...we construct better and better strings from the
best partial solutions of past samplings”(Goldberg, 1989b, p. 41). The ability to
produce fitter and fitter partial solutions by combining building blocks is believed to
be the primary source of the GA’s search power. However, in spite of the presumed
central role of building blocks and recombination, the GA research community lacks
precise and quantitative descriptions of how schemas interact and combine during
the typical evolution of a GA search. Thus, we are interested in isolating land-
scape features implied by the building-block hypothesis, and studying in detail the
GA’s behavior—the way in which schemas are processed and building blocks are
combined—on simple landscapes containing those features.

Other GA researchers have studied these same questions using different techniques.
The most prominent approach has been to study the effects of GA deception on
the GA’s performance (e.g., Goldberg, 1987, 1989a; Liepins & Vose, 1990; Whitley,



1991). However, deception is only one among many features of a problem that
affect GA performance (e.g., see Liepins & Vose, 1990, and Forrest & Mitchell,
1991). Rather than studying hard problems on which the GA fails, our initial
approach has been to examine the GA’s behavior on landscapes for which it is
likely to perform well. By understanding what features of those landscapes lead to
good performance, we hope to better characterize the class of such landscapes.

One major component of this endeavor is to define the simplest class of landscapes
on which the GA performs “as expected”, thus confirming the broad claims of
the building-block hypothesis. However, the task of designing such landscapes has
turned out to be substantially more difficult and complex than we originally antic-
ipated. Our initial choices of simple landscapes have revealed some surprising and
unanticipated phenomena. The story of how small variations of a basic landscape
can make GA search much less effective reveals a great deal about the complexity of
GAs and points out the need for a deeper theory of how low-order building blocks
are discovered and combined into higher-order solutions.

In the following sections we introduce the Royal Road functions, a class of non-
deceptive functions in which the building blocks are explicitly defined. We then
show how simple variants of these functions can have quite different effects on the
performance of the GA, and discuss the reasons for these differences.

2 STEPPING STONES IN THE CROSSOVER
LANDSCAPE

The building-block hypothesis suggests two landscape features that are particularly
relevant for the GA: (1) the presence of short, low-order, highly fit schemas; and (2)
the presence of intermediate “stepping stones” —intermediate-order higher-fitness
schemas that result from combinations of the lower-order schemas, and that in
turn can combine to create even higher-fitness schemas. Two basic questions about
stepping stones are: How much higher in fitness do the intermediate stepping stones
have to be for the GA to work well? And how must these stepping stones be
configured? To investigate these questions, we first define the Royal Road functions,
which contain these features explicitly.

To construct a Royal Road function, we select an optimum string and break it up
into a number of small building blocks, as illustrated in Figure 1. We then assign
values to each low-order schema and each possible intermediate combination of low-
order schemas, and use those values to compute the fitness of a bit string z in terms
of the schemas of which it is an instance.

The function R1, illustrated in Figure 1, is computed very simply: a bit string =
gets 8 points added to its fitness for each of the given order-8 schemas of which
it is an instance. For example, if z contains exactly two of the order-8 building
blocks, R1(z) = 16. Likewise, R1(111...1) = 64. Stated more generally, the value
R1(z) is the sum of the coefficients ¢, corresponding to each given schema of which
z is an instance. Here ¢ is equal to order(s). The fitness contribution from an
intermediate stepping stone (such as the combination of s; and sz in Figure 1) is
thus a linear combination of the fitness contribution of the lower-level components.
R1 is similar to the “plateau” problem described by Schaffer and Eshelman (1991).
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Figure 1: An optimal string broken up into eight building blocks. The func-
tion R1(z) (where z is a bit string) is computed by summing the coefficients c;
corresponding to each of the given schemas of which z is an instance. For ex-
ample, R1(1111111100...0) = 8, and R1(1111111100...011111111) = 16. Here
¢s = order(s).

According to the building-block hypothesis, R1’s building-block and stepping-stone
structure should lay out a “royal road” for the GA to follow to the global opti-
mum. In contrast, an algorithm such as simple steepest-ascent hill-climbing, which
systematically tries out single-bit mutations and only moves in an uphill direction,
cannot easily find high values in such a function, since a large number of single
bit-positions must be optimized simultaneously in order to move from an instance
of a lower-order schema (e.g., 11111111**.. *) to an instance of a higher-order in-
termediate schema (e.g., 1111111 1#FFFFX11111111%*% . *). While some random
search may be involved in finding the lowest-level building blocks (depending on the
size of the initial population and the size of the lowest-level blocks), the interest-
ing aspect of R1 is studying how lower-level blocks are combined into higher-level
ones, and this is the aspect with which we are most concerned. Part of our purpose
in designing the Royal Road functions is to construct a class of fitness landscapes
that distinguishes the GA from other search methods such as hill-climbing. This
actually turned out to be more difficult than we anticipated, as will be discussed in
Section 5.

This class of functions provides an ideal laboratory for studying the GA’s behavior:

e The landscape can be varied in a number of ways. For example, the “height”
of various intermediate stepping stones can be increased or decreased (e.g., the
fitness contribution can be a nonlinear combination of the fitness contributions
from the components). Also, the size of the lowest-order building blocks can be
varied, as can the degree to which they cover the optimum. Finally, different
degrees of deception can be introduced by allowing the lower-order schemas to
differ in some bits from the higher-order stepping stones, effectively creating
low-order schemas that lead the GA away from the good higher-order schemas.
The effects of these variations on the GA’s behavior can then be studied in
detail.

o Since the global optimum, and, in fact, all possible fitness values, are known in
advance, it is easy to compare the GA’s performance on different variations of
Royal Road functions.
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Figure 2: Royal Road Function R2. R2(z) is computed in the same way as
R1: by summing the coeflicients ¢; corresponding to each of the given schemas
of which z is an instance. For example, R2(1111111100...011111111) = 16, but
R2(111111111111111100...0) = 32. R2(11111111...1) = 192.

e All of the desired schemas are known in advance, since they are explicitly built
into the function. Therefore, the dynamics of the search process can be studied
in detail by tracing the ontogenies of individual schemas.

We are using the Royal Road functions to study a number of questions about
the effects of crossover on various landscapes, including the following: For a given
landscape, to what extent does crossover help the GA find highly fit schemas?
What is the effect of crossover on the waiting times for desirable schemas to be
discovered? What are the bottlenecks in the discovery process? How does the
configuration of stepping stones and size of steps defined by stepping stones affect
the GA’s performance? Answering these questions in the context of the idealized
Royal Road functions is a first step towards answering them for more general cases.

We first investigated the effect of the step size of the intermediate stepping stones
on the GA’s performance. To do this, we compared the performance of the GA on
R1 with its performance on a second function R2, where the fitness contributions of
certain intermediate stepping stones are much higher. R2 is illustrated in Figure 2.
R2 is calculated in the same way as R1: the fitness of a bit string « is the sum of
the coefficients corresponding to each schema (s1—s14) of which it is an instance.

For example, R2(1111111100...011111111) = 16, since the string is an instance
of both s; and sg, but R2(111111111111111100...0) = 32, since the string is an
instance of s1, s5, and sg. Thus, a string’s fitness depends not only on the number of
8-bit schemas to which the string belongs, but also on their positions in the string.
The optimum string 11111111...1 has fitness 192, since the string is an instance of
each schema in the list.



3 ROYAL ROAD EXPERIMENTS

In an earlier paper (Mitchell, Forrest, & Holland, 1992) we reported some initial
results on Royal Road functions. Our main performance measure was the number
of generations it took the GA to find the function optimum, although for some
experiments we also looked at the discovery time for schemas of different orders.
We first confirmed that the GA performs significantly better on R1 and R2 when
crossover is used than when crossover is turned off and only mutation is used, and
we showed that both versions of the GA perform significantly better than a simple
steepest-ascent hill-climbing algorithm. These results were expected. We then
described some unexpected experimental results comparing the GA’s performance
on R2 with its performance on R1. Here we extend these experimental results and
analyze them in more detail, and compare the GA’s performance with that of a
more sophisticated hill-climber.

For our initial experiments, we used functions defined over strings of length 64. The
GA population size was 128, with the initial population generated at random. In
each run the GA was allowed to continue until the optimum string was discovered,
and the total number of function evaluations performed was recorded. We used
a generational GA with single-point crossover and sigma scaling (Tanese, 1989;
F,—F
- 20
where Fj is ¢’s fitness, F' is the mean fitness of the population, and ¢ is the standard
deviation. The maximum expected offspring of any string was 1.5—if the above
formula gave a higher value, the value was reset to 1.5. This is a strict cutoff, since
it implies that most individuals will reproduce only 0, 1, or 2 times. The effect
of this selection scheme is to slow down convergence by restricting the effect that
a single individual can have on the population, regardless of how much more fit
it is than the rest of the population. Even with this precaution, we observe some
interesting premature convergence effects (described in the following section). The
crossover probability was 0.7 per pair of parents and the mutation probability was

0.005 per bit.

Forrest & Mitchell, 1991): an individual ¢’s expected number of offspring is 1+

The probability that a randomly generated string contains one of the bottom-level

order-8 schemas is 8 2% = % Since the initial population has 128 randomly
generated individuals, there were on average % = 4 total instances of bottom-level

schemas in the initial population. That is, there is a 0.5 probability that there
will be an instance of any particular block; thus, since there are 8 different lowest-
level blocks, there will on average be 4 total instances of lowest-level blocks in the
population.

3.1 EXPERIMENTS ON R1 AND R2

We expected the GA to perform better—that is, find the optimum more quickly—
on R2 than on R1. In R2 there is a very clear path via crossover from pairs of
the eight initial order-8 schemas (s;—ss) to the four order-16 schemas (sg—s12), and
from there to the two order-32 schemas (s13 and s14), and finally to the optimum
(sopt). We believed that the presence of this stronger path would speed up the
GA’s discovery of the optimum, but our experiments showed the opposite: the GA
performed significantly better on R1 than on R2. Statistics summarizing the results
of 500 runs on each function are given in Table 1. This table gives the mean and



ORIGINAL EXPERIMENT

Function Evaluations to Optimum
500 runs | R1 R2
Mean 62099 (std err: 1390) | 73563 (std err: 1794)
Median 56576 66304

Table 1: Summary of results of running the GA on R1 and R2. The table gives the
mean and median function evaluations taken to find the optimum over 500 runs on
each function. The numbers in parentheses are the standard errors.

median number of function evaluations taken to find the optimum over 50 runs each

on R1 and R2.

If we hope to understand the GA’s performance in general, we need to understand
in detail what are the potential bottlenecks for discovering desirable schemas. This
has been studied extensively in the deception literature, but R2 is a non-deceptive
function that nonetheless contains some features that keep the GA from discovering
desirable schemas as quickly as in R1.

What slows down the GA in the case of R27 To investigate this, we took a typical
run of the GA on R2 and graphically traced the evolution of each schema in the
tree. Figure 3 gives this trace for three sets of schemas: s1, s3,and sg; s3, s4, and
s10; and ss, sg, and s11 (see Figure 2). In each plot, the density (% of population)
of each schema is plotted against time (generations). The density is sampled every
10 generations.

These plots show a striking phenomenon. In the top plot in Figure 3, s; and s
appear early and instances of them quickly combine to form sg. Once each schema
is discovered, its density in the population rises quite quickly to over 90% of the
population by generation 60 or so. Around generation 220 there is a distinct dip in
the densities of these three schemas.

The middle plot shows a very different evolution for ss, s4, and s19. The schemas
sz and s4 are both present in the initial (randomly generated) population (though
s3’s presence at generation 0 is not visible on the plot), but while s4 rises quickly, s3
dies out by generation 10, is fleetingly rediscovered (along with s1g) at generation
120 (see blip on the z-axis), and does not return until the very end of the run, at
which point a mutation brings it (along with s10) back (see blip on the z-axis).
This same mutation is responsible for creating s,,; at generation 535, when the run
ends. The schema s4, after a quick initial rise, enters a pronounced dip at the same
time the milder dip can be seen in the top plot of Figure 3, around generation 220.

What is the cause of these dips, and what prevents sz from persisting in the popu-
lation? A likely answer can be inferred from the bottom plot. Schema sg appears
around generation 30, rises fairly quickly, taking a sharp upturn around generation
220 and rising to about 95% of the population. Schema s5 appears briefly around
generation 20 (blip on the z-axis) and dies out, but appears again at generation
220. The instance of it in the population is also an instance of s;1, and instances
of s1; rise very quickly. This rise exactly coincides with the minor dip in sy, s9,
and sg, and the major dip in s4. What appears to be happening is the following;:



Evolution of schemas 1, 2, and 9 (see Figure 2)
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Figure 3: Evolution of three sets of schemas in a typical run of the GA on R2. In
each plot, the density of each schema (% of population) is plotted against generation.
Note that in the middle plot, schemas 3 and 10 are visible only as tiny bumps on
the x-axis at generations 120 and 535.



in the first few instances of s11, along with the 16 1’s in the fifth and sixth blocks
are several 0’s in the first through fourth blocks. An instance of s;; has fitness
8+ 8 4 16 = 32, whereas an instance of an order-8 schema such as s4 has fitness 8.
This difference causes s1; to rise very quickly compared to s4, and instances of s
with some 0’s in the fourth block tend to push out many of the previously existing
instances of s4 in the population. This phenomenon has been called “hitchhiking”,
where 0’s in other positions in the string hitchhike along with the highly fit s1;.
The most likely positions for hitchhikers are those close to the highly fit schema’s
defined positions, since they are less likely to be separated from the schema’s de-
fined positions under crossover. Such effects are seen in real population genetics,
and have been discussed in the context of GAs by Schraudolph and Belew (1990),
and Das and Whitley (1989), among others. Note that this effect is pronounced
even with the relatively weak form of selection used in our GA. (We also compared
the GA’s performance on R1 and R2 using a linear rank-scaling method (Baker,
1985) instead of the sigma-scaling method described above, and obtained results
similar to those given in Table 1.)

The plots given in Figure 3 come from a single run, but this run was typical; the
same type of phenomenon was observed on many of the other runs on R2 as well.
Our hypothesis is that this hitchhiking effect is what causes the relatively slower
times (on average) for the GA to find the optimum on R2. The power of crossover
to combine lower-level building blocks was hampered, since some of the necessary
building blocks were either partially or totally suppressed by the quick rise of disjoint
building blocks. This suggests that there is more to characterizing a GA landscape
than the absolute direction of the search gradients. In these functions, it is the
actual differences in relative fitnesses for the different schemas that are relevant.

In R1, which lacks the extra fitness given to some intermediate-level schemas, the
hitchhiking problem does not occur to such a devastating degree. The fitness of an
instance of| say, s11 in R1 is only 16, so its discovery does not have such a dramatic
effect on the discovery and persistence of other order-8 schemas in the function.
Contrary to our initial intuitions, it appears that the extra reinforcement from
some intermediate-level stepping stones actually harms the GA in these functions.

It might be thought that these results are due in part to sampling error: since the
lowest order-building blocks are of length 8, a GA with a population of 128 has no
samples of many of the lowest-order building blocks in the initial population (on
average, 1/2 of the lowest-order blocks will not be represented), and thus has to
wait until the order-8 building blocks are created by random variation. ! To test
the effect of this on our results, we performed two additional experiments: (1) we
ran the GA on Rl and R2 with a population size of 1024, which gives 4 expected
instances of each order-8 schema in the initial population; and (2) we ran the GA
with population size 128 on modified versions of R1 and R2 in which the lowest-
order building blocks were of length 4 rather than length 8. In this latter case, there
are on average 8 instances of each order-4 building block in the initial population.
The results from these two experiments are given in Tables 2 and 3. They show that
these modifications, although improving the GA’s absolute performance (especially

!Note: this fact caused our experiments (time to find the optimum) to have a higher-
than-normal variance, which is why we performed at least 200 runs for most of our
experiments.



POPULATION SIZE 1024

Function Evaluations to Optimum
200 runs | R1 R2
Mean 37453 (std err: 868) | 43213 (std err: 1275)
Median 34816 36864

Table 2: Summary of results of 200 runs of the GA with population size 1024 on
R1 and R2.

LOWEST-ORDER SCHEMAS LENGTH 4

Function Evaluations to Optimum
200 runs | R1 R2
Mean 6568 (std err: 198) | 11202 (std err: 394)
Median 5760 9600

Table 3: Summary of results of 200 runs of the GA on modified versions of R1 and
R2, in which the lowest-order building blocks are of length 4.

in the case of order-4 building blocks, which makes the function much easier to
optimize), do not change the qualitative difference between the time to optimum
for R1 and R2. This indicates that the difference is not primarily due to sampling
error.

These results point to a pervasive and important issue in the performance of GAs:
the problem of premature convergence. The fact that we observe a form of prema-
ture convergence even in this very simple setting suggests that it can be a factor in
any GA search in which the population is simultaneously searching for two or more
non-overlapping high fitness schemas (e.g., s4 and s11), which is often the case. The
fact that the population loses useful schemas once one of the disjoint good schemas
is found suggests one reason that the rate of effective implicit parallelism of the
GA (Holland, 1975; Goldberg, 1989b) may need to be reconsidered. (For another
discussion of implicit parallelism in GAs, see Grefenstette & Baker 1989.)

3.2 DO INTRONS SUPPRESS HITCHHIKERS?

In order to understand the hitchhiking behavior more precisely, we performed
an experiment that we believed would eliminate it to some degree. Our hy-
pothesis was that hitchhiking occurred in the loci that were spatially adjacent
to the high-fitness schemas (e.g., s11 above). In order to reduce this effect, we
constructed a new function, R2i,¢rons, by introducing blocks of 8 “introns”—=8
additional *’s—in between each of the 8-bit blocks of 1’s. Thus in R2;nrons,
strings were of length 128 instead of 64. For example, in R2;nirons, S1 1S
TTTT11 TRk gy jg FRFHRRRRRARIARFAX11111111%*. . *) and their com-
bination, sg, is 1111111 1***¥*****¥11111111**. .. *. The optimum is the string con-
taining each block of 8 1’s, where the blocks are each separated by eight loci that can
contain either 0’s or 1’s. The idea here was that a potentially damaging hitchhiker
would be at least 8-bits away from the schema on which it was hitchhiking, and
would thus be likely to be lost under crossover. (Levenick, 1991, found that insert-



VARIANTS OF R2

Function Evaluations to Optimum
200 runs | R2introns R2 4141
Mean 75599 (std err: 2697) | 62692 (std err: 2391)
Median 70400 56448

Table 4: Summary of results of 200 runs of the GA on two variants of R2.

ing introns into individuals improved the performance of the GA in one particular
set of environments.)

As shown in column 1 of Table 4, running the GA on R2;,4rons yielded results not
significantly different from those for R2. This was contrary to our expectations,
and the reasons for this result are not clear, but one hypothesis is that once an
instance of a higher-order schema (e.g., s11) is discovered, convergence is so fast that
hitchhikers are possible even in loci that are relatively distant from the schema’s
defined positions.

3.3 VARYING THE COEFFICIENTS IN R2

It is clear that some intermediate-level reinforcement is necessary for the GA to
work. Consider R1’, a variant of R1, where R1'(z) = 8 if # is an instance of at
least one of the 8-bit schemas, and R1'(x) = 64 if z is an instance of all the 8-bit
schemas. Here the GA would have no reason to prefer a string with block of 16 1’s
over a string with a block of 8 1’s; and thus there would be no pressure to increase
the number of 1’s. Intermediate schemas in R1 provide linear reinforcement, since
the fitness of an instance of an intermediate-order schema is always the sum of
the fitnesses of instances of the component order-8 schemas. Some schemas in R2
provide strong nonlinear reinforcement, since the fitness of an instance of| say, sg
is much higher than the sum of the fitnesses of instances of the component order-8§
schemas s; and s;. Our results indicate that the nonlinear reinforcement given by
some schemas is too high—it hurts rather than helps the GA’s performance.

Does nonlinear reinforcement ever help the GA rather than hinder it? To study this
we constructed a new function, R2¢;,;, with a much weaker nonlinear reinforcement
scheme: for this function, ¢;—c14 are each set to the flat value 1. Here the reinforce-
ment is still nonlinear (an instance of sg will have fitness 14+ 14 1, which is greater
than the sum of the two components), but the amount of reinforcement is reduced
considerably.

The results of running the GA on R2j4; is given in the second column of Table 4.
The average time to optimum for this function is approximately the same as for R1.
Thus the smaller fitness advantage in R2;4; does not seem to hurt performance,
although it does not result in improved performance over that on R1.

These phenomena may be related to results by Feldman and his colleagues on the
effects of super- and sub-multiplicative fitness functions on the evolutionary viability
of crossover (Liberman & Feldman, 1986; Bergman & Feldman, 1990). However,
there are several problems with applying Feldman’s theorems directly. One problem
is that Feldman studies the evolutionary viability of crossover rather than the degree



to which crossover helps discover high-fitness individuals. Our work concentrates
on the latter. We are currently investigating how these two concerns are related.
(This was also studied by Schaffer and Eshelman, 1991.)

4 DISCUSSION

The results described in the previous two sections show that the GA’s ability to
process building blocks effectively depends not only on their presence, but also on
their relative fitness. If some intermediate stepping stones are too much fitter than
the primitive components, then premature convergence slows down the discovery of
some necessary schemas. Simple introns and a very mild selection scheme do not
seem to alleviate the premature convergence and hitchhiking problems.

Our results point out the importance of making the building-block hypothesis a more
precise and useful description of building-block processing. While the disruptive
effects that we observed (hitchhiking, premature convergence, etc.) are already
known in the GA literature, there is as yet no theorem associating them with the
building-block structure of a given problem.

In our experiments we have observed that the role of crossover varies considerably
throughout the course of the GA search. In particular, three stages of the search
can be identified: (1) the time it takes for the GA to discover the lowest-order
schemas, (2) the time it takes for crossover to combine lower-order schemas into a
higher-order schema, and (3) the time it takes for the higher-order schema to take
over the population. In multi-level functions, such as the Royal Road functions,
these phases of the search overlap considerably, and it is essential to understand the
role of crossover and the details of schema processing at each stage (this issue has
also been investigated by Davis, 1989, and by Schaffer & Eshelman, 1991, among
others). In previous work, we have discussed the complexities of measuring the
relative times for these different phases (Mitchell, Forrest, & Holland, 1992).

5 EXPERIMENTS WITH HILL-CLIMBING

As was mentioned earlier, part of our purpose in designing the Royal Road functions
is to construct the simplest class of fitness landscapes on which the GA will not only
perform well, but on which it will outperform other search methods such as hill-
climbing. In addition to our experiments comparing the GA’s performance on R1
and R2, we compared the GA’s performance with that of three commonly used iter-
ated hill-climbing schemes: steepest-ascent hill-climbing, next-ascent hill-climbing
(Miihlenbein, 1991), and a scheme we call “random-mutation hill-climbing”, that
was suggested by Richard Palmer (personal communication). Our implementation
of these various hill-climbing schemes is as follows:

¢ Steepest-ascent hill-climbing (SAHC):

1. Choose a string at random. Call this string current-hilltop.

2. Systematically mutate each bit in the string from left to right, recording
the fitnesses of the resulting strings.

3. If any of the resulting strings give a fitness increase, then set current-hilltop
to the resulting string giving the highest fitness increase.



HILL-CLIMBING ON R2

Function Evaluations to Optimum

200 runs | SAHC NAHC RMHC
Mean > 256,000 (std err: 0) | > 256,000 (std err: 0) | 6551 (std err: 212)
Median > 256,000 > 256,000 5925

Table 5: Summary of results of 200 runs of various hill-climbing algorithms on R2.

4.

3.

If there is no fitness increase, then save current-hilltop and go to step 1.
Otherwise, go to step 2 with the new current-hilltop.

When a set number of function evaluations has been performed, return
the highest hilltop that was found.

e Next-ascent hill-climbing (NAHC):

1.
2.

Choose a string at random. Call this string current-hilltop.

Mutate single bits in the string from left to right, recording the fitnesses of
the resulting strings. If any increase in fitness is found, then set current-
hilltop to that increased-fitness string, without evaluating any more single-
bit mutations of the original string. Go to step 2 with the new current-
hilltop, but continue mutating the new string starting after the bit position
at which the previous fitness increase was found.

If no increases in fitness were found, save current-hilltop and go to step 1.

When a set number of function evaluations has been performed, return
the highest hilltop that was found.

Notice that this method is similar to Davis’s “bit-climbing” scheme (Davis,
1991). In his scheme, the bits are mutated in a random order, and current-
hilltop is reset to any string having equal or better fitness than the previous
best evaluation.

¢ Random-mutation hill-climbing (RMHC):

1.
2.

Choose a string at random. Call this string best-evaluated.

Choose a locus at random to mutate. If the mutation leads to an equal or
higher fitness, then set best-evaluated to the resulting string.

Go to step 2.

When a set number of function evaluations has been performed, return
the current value of best-evaluated.

Table 5 gives results from running these three hill-climbing schemes on R2. In each
run the hill-climbing algorithm was allowed to continue either until the optimum
string was discovered, or until 256,000 function evaluations had taken place, and
the total number of function evaluations performed was recorded. As can be seen,
steepest-ascent and next-ascent hill-climbing never found the optimum during the
allotted time, but random-mutation hill-climbing found the optimum on average
more than ten times faster than the GA with population size 128, and more than
six times faster than the GA with population size 1024. Note that random-mutation
hill-climbing as we have described it differs from the bit-climbing method used by



Davis (1991) in that it does not systematically mutate bits, and it never gives up
and starts from a new random string, but rather continues to wander around on
plateaus indefinitely. Larry Eshelman (personal communication) has pointed out
that the random-mutation hill-climber is ideal for the Royal Road functions—in
fact much better than Davis’s bit-climber—but will have trouble with any function
with local minima. (Eshelman found that Davis’s bit-climber does very poorly on
R1, never finding the optimum in 50 runs of 50,000 function evaluations each.)

In addition to basing our comparison on the number of function evaluations to the
optimum, we also compared the average on-line performance (De Jong, 1975) of
the GA (population sizes 128 and 1024) with random-mutation hill-climbing, both
running on R2. Figure 4 plots the results of that comparison. For a given run
of the GA or of RMHC, the on-line performance at a given number of function
evaluations is defined as the average value of all function evaluations made up to
that point. We recorded the on-line performance values at intervals of 128 function
evaluations, and repeated this procedure for 100 runs. We then averaged the on-line
performance values, at each interval of 128 function evaluations, over all the runs.
Thus each point on a plot in Figure 4 represents an average of on-line performance
values over a number of runs. (The number of values averaged at each point varies:
since the GA and RMHC stop when the optimum is found, different runs performed
different numbers of function evaluations. We give only averages for which there
were a significant number of values to average.)

It can be seen from the plots that RMHC significantly outperforms both versions
of the GA under this measure as well.?

These results are a striking demonstration that, when comparing the GA with hill-
climbing on a particular problem or test-suite, it matters which type of hill-climbing
algorithm is used. Davis (1991) has also made this point.

The Royal Road functions were originally designed to serve two quite different
purposes: (1) as an idealized setting in which to study building-block processing and
the role of crossover, and (2) as an example of a simple function that distinguishes
GAs from hill-climbing. While we have discovered that certain forms of hill-climbing
outperform the GA on these functions (thus, they are inappropriate in exactly this
form for the second purpose), they do fulfill the first purpose.

6 CONCLUSIONS AND FUTURE DIRECTIONS

The research described in this paper is an initial step in understanding more pre-
cisely how schemas are processed under crossover. By studying the GA’s behavior
on simple landscapes in which the desirable building blocks are explicitly defined, we
have discovered some unanticipated phenomena related to the GA’s ability to pro-
cess schemas efficiently, even in nondeceptive functions. The Royal Road functions
capture, in an idealized and clear way, some landscape features that are particularly
relevant for the GA, and we believe that a thorough understanding of the GA’s be-
havior on these simple landscapes will be very useful in developing more detailed
and useful theorems about GA behavior.

21t is interesting to note that under this measure, the 128 population GA outperforms
the 1024 population GA in the initial stages of the run.
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Figure 4: Plots of the average on-line performance of the GA (population sizes 128
and 1024) and of random-mutation hill-climbing (RMHC), over 100 runs. The plot
for RMHC stops at around 6000 function evaluations because RMHC had almost
always found the function optimum by that time.



The research reported here is work in progress, and there are several directions for
future investigation. Here we sketch some of our short and longer range research
plans.

In the short term, we plan to study more carefully the bottlenecks in the discovery
of desirable schemas, and to quantify more precisely the relationship between the
fitness values of the various building blocks and the degree to which these bottle-
necks will occur. Hitchhiking is evidently one bottleneck, and we need to understand
better in what way it is occurring and under what circumstances. Once we have
described the phenomena in more detail, we can begin developing a mathematical
model of the schema competitions we observe (illustrated in Figure 3) and how they
are affected by different building-block fitness schemes. This model may be related
to models proposed by Vose and Liepins (1991).

Our hitchhiking results need to be further analyzed and explained, and we plan
a more detailed analysis of the different effects of various nonlinear reinforcement
schemes. In particular, more details are needed in the comparison of GA perfor-
mance on 21 with performance on R2j14;, and on other coeflicient schemes.

We believe that there are versions of “royal-road” landscapes that will fulfill our goal
of finding simple functions that distinguish GAs from hill-climbing. For example,
we plan to try the following variants: adding noise, including all combinations of
lower-order schemes in the explicit list of schemas, and allowing schemas to overlap.

The Royal Road functions explore only one type of landscape feature that is of
relevance to GAs: the presence and relative fitnesses of intermediate-order building
blocks. Our longer-term plans include extending the class of fitness landscapes
under investigation to include other types of relevant features; some such features
were described by Mitchell, Forrest, and Holland (1992). We are also interested in
developing statistical measures that could determine the presence or absence of the
features of interest. These might be related to work on determining the correlation
structure of fitness landscapes (see Kauffman, 1989; Lipsitch, 1991; and Manderick,
de Weger, and Spiessens, 1991). If such measures could be developed, they could
be used to help predict the likelihood of successful GA performance on a given
landscape.
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